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Flock members experience gas pressures higher than lone individuals 
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A B S T R A C T   

Local interactions between flock members in absence of centralized control generate collective dynamics char
acterized by coherent large-scale patterns. We investigate whether aggregates of individuals like birds, swarms 
and fishes behaving in concert with their neighbors may modify the physical properties of the fluid medium in 
which they are embedded. Using the K-Nearest Neighbors algorithm to simulate collective animal behavior, we 
showed that the occurrence of collective dynamics can modify the physical parameters of the phase space in 
which the interacting individuals’ trajectories take place. This means that lone individuals experience the nearby 
fluid medium (i.e., the air in case of birds/insects and the water in case of fishes) differently from flock members. 
In particular, our framework suggests that a bird belonging to a group and acting collectively with its neighbors 
perceives the nearby atmosphere as denser, compared with an isolated bird.   

1. Introduction 

Collective animal behavior emerges from simple local rules of 
interaction among neighbor individuals in absence of centralized con
trol (Ballerini et al., 2008; Cavagna et al., 2010). Self-organized global 
order consists of coherent and collective large-scale patterns generated 
in large interacting systems (Bialek et al., 2012; Mora et al., 2016). 
Scale-free changes in the behavioral state of one animal affect and are 
affected by those of all other animals, no matter how large the group is 
(Cavagna et al., 2010). Numerical models as well as experimental 
findings suggest that the mechanism of group formation is universal, 
transcending the detailed nature of its components (Attanasi et al., 
2015). Computational models assessing collective animal behavior like 
bird flocks are based on a few empirical rules (Reynolds 1987):  

1) Attraction among individuals grants cohesion of the aggregation, 
ensuring that no bird remains isolated.  

2) Short-range repulsion zone of the order of the wingspan prevents 
dangerous proximity and avoids collisions, thereby preserving indi
vidual integrity (Ballerini et al., 2008).  

3) Alignment of the velocities allows birds to fly in the same direction, 
keeping similar speed and direction.  

4) Noise must be kept into account when drawing the proper equations 
(Giardina 2008). 

The experimentally assessable interacting flock members’ physical 
features include shape, movement, density and structure, as well as 

subtler features such as directional polarity, average group speed, 
marginal speed, changes in flock shape, local density-density correla
tions, information transfer, topological distance, bearing angle, distance 
to nearest neighbors, two-points correlation function, coexistence of 
multiple timescales, etc. (Cavagna et al., 2022; Bialek et al., 2012; Chen 
et al., 2023). 

Here, using two-points correlation function, we asked whether lone 
individuals might experience physical forces differently from groups of 
interacting individuals. We exploited the K-Nearest Neighbors (k-NN) 
algorithm to evaluate whether increases in the number of interactions 
among neighbor individuals lead to physical changes in the surrounding 
environment. In particular, we investigated whether lone birds experi
ence the air masses surrounding them differently from birds belonging 
to flocks. 

2. K-NN algorithms and collective behaviour 

To evaluate the interactions among individuals during collective 
behavior, we focused on the K-Nearest Neighbors algorithm, also known 
as KNN or k-NN (Cover and Hart, 1967; Holmes and Adams, 2003). It is a 
nonparametric, supervised learning algorithm that uses proximity to 
catalogue the grouping of individual data points in a phase space 
(Rajagopalan and Lall, 1999). It is usually used as a classification al
gorithm based on the assumption that similar points can be found near 
one another (Bang-Jensen et al., 2004). It does not require prior as
sumptions as to the form of the variables’ joint probability density 
function (Rajagopalan and Upmanu, 1999). 
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We coloured each point of the two-dimensional plane with the class 
that would be assigned to it using the k-NN algorithm, so that the 0/1 
values were conventionally color-coded red and blue. In terms of col
lective animal behaviour, the 0/1 values had the following meaning:  

1) The 1-valued blue shapes stood for the space occupied by interacting 
flock members.  

2) The 0-valued red shapes stood for the space occupied by the fluid 
medium (either gaseous in case of birds or insects, or liquid in case of 
fishes) surrounding the interacting flock members. 

To provide a few examples, the blue shapes might stand either for 
bird flocks, or mating swarms of mosquitoes and midges, or for a school 
of fish, while the red shapes might stand for the surrounding air or water 
provided with physical parameters like pressure, density, temperature, 
local turbulence, etc. 

We performed a k-NN algorithm simulation on an original picture 
depicting red and blue shapes (Figure). We run the Stanford Vision and 
Learing Lab’s interactive K-Nearest Neighbors Demo (http://vision.stan 
ford.edu/teaching/cs231n-demos/knn/) using the following 
parameters:  

a) Number of points: 60 (corresponding to the number of individuals is 
a flock).  

b) Metric: L1 norm (Lasso regression).  
c) Number of neighbors (K) = 1–7. 

As far as we are concerned with collective animal behaviour, the k- 
NN algorithm’s most relevant parameter is the K value, i.e., an arbitrary 
number defining how many neighbors will be checked to determine the 
classification of a specific query point, i.e., a single individual (Lipsky 
and Porat, 2008). The number of neighbors K entails the similarity be
tween a single point and the surrounding ones such that the higher the K, 
the higher the number of assessed correlations between adjacent points. 
The higher the number K, the higher the likelihood for neighbor in
dividuals to perform the same physical movements (Patwardhan et al., 
2023). In biological terms, this means that the higher the number K, the 
more the single individuals like birds, insects and fishes will behave in 
concert with their neighbors, displaying the same physical features like 
speed, or polarization, or direction, or bearing angle, etc. When the 
minimum default value of 1 is assigned to K, only one neighbor is used 
for the prediction and the instance will be assigned to the same class as 
its single nearest neighbor. In turn, when K corresponds to the maximum 
number of available data points, all the individuals in the flock are used 
for prediction. 

We ended up selecting a number K corresponding to odd numbers 
between 1 and 7 for two reasons. First, it is recommended to have an odd 
number for K to avoid ties in classification. Second, it has been 

established that every bird in a flock interacts on average with a fixed 
number of six to seven nearest neighbors, independent of density fluc
tuations (Ballerini et al., 2008; Bialek et al., 2012). This interaction with 
the 6–7 closest neighbors does not depend on the metric distance or a 
fixed-size neighborhood, but rather on the topological distance (Niizato 
et al., 2014; Kumar and De, 2021). In brief, the best way to assess any 
change in physical parameters during collective animal behavior is to 
evaluate what happens to the surrounding environment when 6–7 
neighbor individuals act collectively. 

The Figure suggests that the higher the K, the more the blue shapes 
are extended. In turn, the higher the K, the more the red shapes shrink. 
The red surface covers 40.625% of the total surface of the original two- 
dimensional picture, while it covers 28.125% of the total surface of the 
picture corresponding to K = 7. This suggests that the stronger the 
physical correlation among neighbors, the smaller the surface occupied 
by the nearby physical environment. 

3. Energy & pressure during neighbours interactions 

Once established that increases in K lead to shrinking of red shapes 
and dilation of blue shapes, the next step is to look for k-NN algorithm’s 
feasible physical counterparts. By a physical standpoint, the blue shapes 
might represent individuals performing collective movements, while the 
red shapes might represent fluid objects mixed with these individuals. 
The red shapes might stand for fluid physical systems (henceforward 
FPS) surrounding the flock members. FPS are provided with experi
mentally quantifiable amounts of energy, volume and surface. To give 
an example in terms of collective animal behavior, the blue shapes could 
stand for bird flocks flying in the air. The air (corresponding to the red 
shapes) could be supplied with physical features such as friction, vari
ation in pressures, density, etc. 

Our k-NN simulations suggested that increases in K lead to decreases 
in red shapes’ surfaces. This means that the larger the aggregates of 
individuals with the same behavior (blue shapes), the lower the surface 
of the nearby FPS (red shapes). The FPS’ surface tension can be exper
imentally calculated and expressed in energy per unit area (J/m2). If the 
energy endowed in FPS is preserved, decreases in surface lead to in
creases in surface tension. The layout holds not just for the two- 
dimensional phase space described in the original two-dimensional 
picture, but also for three-dimensional phase spaces. In three- 
dimensional phase spaces, the higher the number K, the smaller the 
FPS’ volume. The pressure exerted by FPS can be experimentally 
calculated and expressed in P = J/m3, corresponding to the fixed 
amount of energy J stored inside FPS per unit volume. If the amount of 
energy stored in FPS is kept constant, increases in K lead to decreases in 
FPS volume. Therefore, the pressure inside three-dimensional FPS in
creases when K increases. 

Boyle’s law suggests that the pressure is directly proportional to the 

Fig. 1. K-Nearest Neighbors algorithm’s processing of a two-dimensional phase space consisting of shapes of different colors, standing for interacting flock members 
performing collective movements (blue) and the surrounding fluid medium (red). As the number of neighbors K increases, the surface of the red shapes decreases and 
the surface of the blue shapes increases. 
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density of any fluid object (Webster 1965). If the temperature is kept 
constant, increases in pressure lead to increases in fluid object’s density. 
Therefore, increases in number K lead also to changes in FPS’ density. 
This means that flying flock members behaving collectively experience 
an atmosphere that is denser, compared with the atmosphere experi
enced by lone birds. 

Summarizing, by the standpoint of a flock with collective move
ments, our framework suggests what follows: when interactions among 
neighbors strengthen, the density, the pressure and the surface tension 
exerted by the nearby air are perceived as increased by every individual 
belonging to the group. 

4. Conclusions 

We argued that collective dynamics modify the physical parameters 
perceived by neighbor flock members, depending on the amount of their 
aggregation. A bird acting collectively with other 5–6 birds will perceive 
a given pressure from the surrounding air, while a lone bird will perceive 
a pressure that is lower. We contend that the k-NN algorithm is not just a 
methodological device for objects classification, but rather displays a 
physical counterpart too. The higher the similarity between a single 
point and the surrounding ones (expressed by higher values of K), the 
more the fluid objects embedded in the phase space are shrunken. Being 
the red shapes physical fluids that encompass an amount of energy and 
exert a certain pressure, increases in K lead to increase in the pressure 
exerted by the red shapes on the blue shapes. 

Self-organized systems often exhibit emergent properties that cannot 
be detected when examining their single components (Chvykov et al., 
2021; Hu et al., 2022). The modifications in physical parameters 
described in this paper are not apparent, rather are real phase space’s 
rearrangements that emerge from collective behavior (Gal and Kro
nauer, 2022). We found that, compared with a lone individual, the 
perception of physical parameters varies by the standpoint of an indi
vidual belonging to a flock. Hence, changes in air density can be 
detected and analyzed only by examining self-assembled clusters of 
birds that are weakly coupled (Bormashenko et al., 2020). These 
emergent modifications in the medium’s physical parameters might 
contribute to explain some remarkable features of the bird flocks’ 
behavior. We argue that the changes in phase space’s properties might 
provide a trade-off between grouping and motor efficiency optimization 
(Noda et al., 2016). To provide an example, the energy required to 
compress a gas to a certain volume can be calculated by multiplying the 
difference between the gas pressure and the external pressure by the 
change in volume, such that:  

(Pi -Pe) x ΔV                                                                                        

This means that the pressure exerted by flock members contributes to 
increase the pressure inside FPS, with effects on the flocks’ dynamics. 
Yet, the fact that the density within the flock is nonhomogeneous, as 
birds are packed more tightly at the border than the center (Ballerini 
et al., 2008), might be explained by the fact that the pressure exerted by 
the surrounding air is higher on the boundary of the aggregation. In 
close similarity with the complex patterns displayed by birds’ collective 
escape under predation (Papadopoulou et al., 2022), it could be hy
pothesized that the closer the high-pressure FPS is perceived by the flock 
members, the higher the frequency of their collective turning maneu
vers. Further, it could be conjectured that nearest neighbors are more 
likely to be found on the sides rather than in the direction of motion 
(Giardina 2008) in order to avoid the increased pressure caused by the 
surrounding FPS. We propose the introduction of a relative physical 
quantity, namely the k-nearest neighbors pressure, which stands for a 
change in pressure depending on the relationships among the flock 
members inside the phase space. We define this quantity “relative” 
(Mazzuco et al., 2021) because it rests on the capability of flock mem
bers to interact and produce emergent phenomena. 

In conclusion, we suggest that the very collective dynamics among 
neighbor birds could alter the physical features of the nearby environ
ment. This claim could be generalized to other types of collective 
movements in which physical parameters such as volumes, surfaces, 
magnetic field’s density, etc., can modify. For instance, different degrees 
of biological aggregation, such as cell–cell adhesion processes or clusters 
of migrating cells, may lead to changes in volume energy densities (Cox 
and Smith, 2014). Another feasible example of highly varying biological 
aggregation might consist of oral biofilms harbouring microbial clusters 
interspersed with salivary fluid (Perez-Tanoira et al., 2019; Simon-Soro 
et al., 2022; Martínez-Hernández et al., 2023). Interacting individuals 
displaying collective behavior might be regarded not just as passive 
objects inside energy fields’ gradients, but rather in terms of active 
agents able to modify the energy gradients surrounding them. 
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