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Abstract. This paper introduces geometric realizations of homotopic paths over simply-connected surfaces
with non-zero curvature as a means of comparing and measuring paths between antipodes with either a
Feynman path integral or Woodhouse contour integral, resulting in a number of extensions of the Borsuk
Ulam Theorem. All realizations of homotopic paths reside on a Riemannian surface S, which is simply-
connected and has non-zero curvature at every point in S. A fundamental result in this paper is that for
any pair of antipodal surface points, a path can be found that begins and ends at the antipodal points.
The realization of homotopic paths as arcs on a Riemannian surface leads to applications in Mathematical
Physics in terms of Feynman path integrals on trajectory-of-particle curves and Woodhouse countour
integrals for antipodal vectors on twistor curves. Another fundamental result in this paper is that the
Feynman trajectory of a particle is a homotopic path geometrically realizable as a Lefschetz arc.

1. Introduction

This paper introduces a path-Borsuk-Ulam Theorem, stemming from three main forms of paths over
curved surfaces that have been identified, namely,

1o Poincaré Contour paths were introduced by Poincaré in 1892 in his analysis situs paper [17]. In a
contour path, each subpath is an infinitely small contour on a manifold [17, p. 240]. Recently, N.M.J.
Woodhouse [23] introduced contour integrals defined on twistor curves on a complex manifold.

2o Whitehead Homotopic paths were introduced during the late 1940s by J.H.C. Whitehead [21, 22] and S.
Lefschetz [6], elaborated in [14–16]. For Whitehead, a path is a continuous map h : [0, 1]→ S, i.e., a map
from the unit interval to a space S. For Lefschetz, a homotopic path h in an arcwise connected space S is
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simply a map of a directed (= oriented) closed arc>v0, v1 into S [6, p. 158]. A space is arcwise connected
provided every vector in the space S is on a path containing an initial vector and a terminal vector such
as the arcs in Figure 1.

3o Feynman paths were introduced by R.P. Feynman in his thesis completed in 1942 [3, p. xiv]. A Feynman
path is a trace of the trajectory of a particle between fixed endpoints [3, p. xiv], providing a framework
for a path integral, also introduced by Feynman[3] and elaborated by R.P. Feynman and A.R. Hibbs
in [4]. A Penrose path over a twistor curve (from R. Penrose’s 1968 paper [13]) and its refinement by R.S.
Ward in his 1977 thesis [20] supervised by Penrose, is a form of Feynman path in which the trajectory of
a particle is over a twistor curve.

The original Borsuk-Ulam Theorem (BUT) [2] from K. Borsuk in 1933 is given in terms of antipodal
vectors p⃗,−p⃗ on the surface of an n-dimensional Euclidean sphere Sn, defined by

Sn =
{
(x1, . . . , xn+1) ∈ Rn+1 , x2

1 + · · · + x2
n+1 = 1, n ≥ 2

}
.

Figure 1: Discrete paths h : Id → S with all t ∈ Id.

Points on the surface of a sphere are antipodal provided the points are diametrically opposite each other.
Examples of antipodal vectors are the poles on the surface of a planet.

In 1933, K. Borsuk introduced the following theorem.

Theorem 1.1. (Borsuk-Ulam Theorem) [2, p. 178] For every continuous map f : Sn
→ Rn, there exists p⃗ ∈ Sn

such that f (p⃗) = f (−p⃗).

Remark 1.2. Theorem 1.1 is a translation from German, which is given by J. Matouss̆ek [9, p. 21].

Remark 1.3. The basis for Theorem 1.1 came from K. Borsuk’s thesis completed in 1930 [1]. Ulam is credited by
Borsuk (in a footnote [2, p. 178]) with the idea codified in Theorem 1.1, which Ulam stated as a conjecture. In
effect, Borsuk proved Ulam’s conjecture in 1933. In 1930, L. Lusternik and S. Shnirel’man introduced the nonvoid
intersection of sets of closed surface curves that have antipodal vectors in common.

Theorem 1.4. (Lusternik-Shnirel’man Theorem) [7] For any cover F1, . . . ,Fn+1 of the sphere Sn by n+ 1 closed
sets, there is at least one set containing a pair of antipodal points common to Fi,−Fi (i.e., Fi ∩ −Fi , ∅).

Remark 1.5. Theorem 1.4 is a translation from Russian, which is given by J. Matouss̆ek [9, p. 21].

Theorem 1.4 contrasts with Theorem 1.1. In the Lusternik-Shnirel’man Theorem 1.4, there is a closed set
Fi that is a cover of a sphere Sn and that has an opposite set −Fi, in which the sets Fi,−Fi contain antipodal
points such that Fi ∩ −Fi , ∅. This sharply contrasts with the Borsuk-Ulam Theorem, which asserts there
is a continuous map f from Sn into Rn over a surface containing antipodal surface vectors p⃗,−p⃗ such that
f (p⃗) = f (−p⃗). Also, Theorem 1.4 concludes with the observation that the intersection of Fi,−Fi is nonvoid
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but the values of the shared antipodal points are not given. In the LS theorem formulation, it is possible
that the antipodal points in Fi ∩−Fi have different values. By contrast, in the Theorem 1.1 formulation, it is
asserted that the antipodal points map to the same value.

Given a path h : I→ Sn, let T = {ti} be an ordered and countable subset of I, where 0 < ti < ti+1 < 1 such that
h(ti) , h(ti+1). We then have Id = {0, 1} ∪ T, which is called a discrete unit interval.

Example 1.6. Given a path h : I→ Sn, let T0.0001 = {ti} be a countable and ordered subset of I such that 0 < ti < t j < 1
for all i < j, and |h(ti) − h(ti+1)| = 0.00001 for all i. Then Id = {0, 1} ∪ T0.00001 is a discrete unit interval.

2. Preliminaries

More recent versions of the Borsuk-Ulam Theorem (see, e.g., [11, §68,p.405], [19, p.266],[9, §2.1,p. 23])
require the map f : Sn

→ Rn to be continuous. The map f is continuous provided for each subset E ⊂ Sn,
if a point p⃗ is arbitrarily close to E (i.e., infe⃗∈E |p⃗ − e⃗| = 0), then f (p⃗) is arbitrarily close to f (E). However, in
keeping with an interest in the geometric realization of discrete paths as surface arcs containing points with
gaps between them, we consider discrete maps.

Definition 2.1. Let S be a Riemannian surface. Given a path h : I → S, a discrete path is a map h : Id → S where
Id is a discrete unit interval of I. (We will also denote the discrete path by h.) Here h⃗(0) and h⃗(1) are the initial and
terminal points in S, respectively, and h⃗(t) ∈ S for all t ∈ Id.

Example 2.2. Discretely close surface points p⃗, q⃗ such as close water molecules always have a minute gap between
them.

Example 2.3. The discrete unit interval Id is a collection of discretely close points t, t′ ∈ Id such that t′ = ti±1.

Definition 2.4. A map f : Sn
→ Rn is said to be discrete provided for each subset E ⊂ Sn, if a point p⃗ is discretely

close to E, then f (p⃗) is close to f (E).

Figure 2: The left-slanting arrow ↙ reads collapses to, e.g, ◀ ↙ ▷, i.e., collapse a left-pointing solid triangle to its boundary. For
example, collapse a sphere S to a circle containing a discrete path h : Id → S with h⃗(0) = h⃗(x) ∈ R2, antipodal to h⃗(1) = h⃗(−x) ∈ R2, with
h⃗(t) ∈ R2 for t ∈ Id \ {0, 1}.

Example 2.5. A sample discrete path h : Id → S on the surface of a Riemannian sphere is shown in Figure 2. This
path begins at vector h⃗(0) ∈ Rn at v⃗1 on the surface of S and ends at vector h⃗(1) ∈ Rn, which is the value of antipode
of v⃗1. The assumption made here is that h⃗(0) and h⃗(1) have the same value such as identical temperature.

That is, a discrete path h : Id → S is a map from the discrete unit interval Id ⊂ I (for I = [0, 1]) to a bounded,
simply connected surface S with non-zero curvature. Path h is discrete, since there are gaps between all
points h⃗(t) ∈ S between 0 and 1 in Id ⊂ [0, 1]. The surface S is simply connected provided every path h has
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end points h(0), h(1) ∈ S and h has no self-loops.

Paths either lie entirely on a surface in the planar case or lie on a surface and, possibly, puncture a
surface in the non-planar case. Paths that puncture a surface are called cross-cuts. A cross cut path P (also
called an ideal arc [10, §3, p.11]) has both ends in P and path interior in the interior of S.

Remark 2.6. Homotopic paths were introduced by J.H.C. Whitehead [21]. For Whitehead, a path h : [0, 1] → X is
a continuous map from the unit interval to a cell complex X. In the pursuit of discrete paths in a curved space, the
focus is on 0-cells (single points) and 1-cells (arcs) in an n-dimensional Riemannian space S. A single surface vector
is a 0-cell.

Definition 2.7. [5] An arc is a curvilinear line segment attached to a pair of 0-cells.

Definition 2.8. A pair of vectors v0, v1 is path-connected provided there is a sequence of 0-cells starting with v0 and
ending with v1 in such a way that v0, v1 are attached to a Lefschetz arc. If such an arc exists between a pair of 0-cells v0
and v1 in this sequence (i.e., each pair v0 and v1 in the sequence of 0-cells are path connected), a collection of Leftschetz
arcs corresponding to this sequence is called a discrete Lefschetz arc. We will denote the discrete Lefschetz arc between
v0 and v1 by>v0, v1.

Proposition 2.9. There is a discrete Lefschetz arc between each pair of 0-cells.

Proof. Immediate from Definition 2.8.

Example 2.10. All vectors on the circle in Figure 2 are path-connected, since, from Proposition 2.9, there is a Lefschetz
arc between each pair of vectors.

3. Antipodal and Non-Antipodal Path Borsuk-Ulam Theorem

This section introduces results for the geometric realization of homotopic paths in surface arcs.

Lemma 3.1. Every discrete path constructs a discrete Lefschetz arc.

Proof. Given a path h : I→ X, let h : Id → X be a discrete path. Then the collection

{h(0), h(1)} ∪ {h(ti) : ti ∈ Id}

forms a sequence of path connected 0-cells in X, hence it forms a discrete Lefschetz arc between h(0) and
h(1).

Theorem 3.2. The endpoints of a discrete Lefschetz arc can be the same.

Proof. Given two path connected 0-cells v⃗0 and v⃗1, we know that there is a discrete Lefschetz arc from v⃗0 to
v⃗1. One can reverse the direction of arcs (since it can be considered to be a discrete path) so that the union
of the discrete Lefschetz arcs>v0, v1 and>v1, v0 will form a discrete Lefschetz arc>v0, v0.

Next, consider the geometric realization of discrete homotopic path as a discrete arc and which constructs
a vector field.

Theorem 3.3. Every discrete path constructs a vector field.

Proof. Let h : Id → S be a discrete path. From Lemma 3.1, h constructs a discrete arc
>

h(0), h(1) on a surface S.
Consequently, each h⃗(t) ∈

>

h(0), h(1) has a location (x1, . . . ) ∈ S with its own magnitude and direction S, i.e.,
every h⃗(t) is a vector in S. Hence, h constructs a vector field.
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Lemma 3.4. Let v⃗1, v⃗2 be antipodal vectors on the surface of an n-sphere Sn. There exists a discrete path h with
vectors that are antipodal on a surface Sn.

Proof. Let v⃗1, v⃗2 be antipodal vectors on the surface of an n-sphere Sn. Since Sn is path connected, there is a
discrete Lefschetz arc>v1, v2. The collection of Lefschetz arcs (hence the discrete Lefschetz arc itself) forms a
discrete path h : Id → Sn with h⃗(0) = v⃗1 and h⃗(1) = v⃗2. Hence, a discrete path can be defined for every pair
of antipodal points on Sn.

From what we have observed about discrete paths on the surface of a sphere, we obtain the following
theorem.

Theorem 3.5. (Path-Borsuk-Ulam Theorem) Given a continuous map f : Sn
→ Rn (hence a discrete map), there

exist a discrete path h : Id → R
n and a point p⃗ ∈ Sn such that h(0) = f (p⃗) = f (−p⃗). In fact, h forms a discrete loop

based at f (p⃗).

Proof. It is obvious that a continuous map f : Sn
→ Rn is also a discrete map. From Theorem 1.1 (Borsuk-

Ulam Theorem), we know that there is a point p⃗ ∈ Sn such that f (p⃗) = f (−p⃗). Consider a sequence of points
{v⃗t} ⊂ Sn indexed over a discrete interval Id such that v⃗0 = p⃗, v⃗1 = −p⃗, and two consequtive terms v⃗t, v⃗t+1 are
discretely close for all t ∈ Id. Then consider the image of this sequence { f (v⃗t)}t∈Id . This set can be considered
as the image of the discrete path h : Id → R

n defined by h(t) = f (v⃗t). In fact, h is a discrete loop.

Remark 3.6. An immediate consequence of Theorem 3.5 is that, for any pair of antipodal surface points, we can
always introduce a discrete path h that begins and ends at the antipodal points such as places that have same latitude
and longitude. For example, the antipode of Winnipeg, Manitoba, Canada with coordinates 49◦.53’N, 97◦.8’W is
Port-aux-Français, Kerguelen, French Southern Territories.

Example 3.7. An example of a discrete path that begins and ends at antipodal surface points is shown in Figure 2.

Observe that a path can be constructed between any pair of surface vectors. This observation leads to
more general form of Theorem 3.5.

Theorem 3.8. (Non-antipodal path-BUT) Let the discrete unit interval Id be an index set for vectors v0, . . . , vt, . . . , v1,
t ∈ Id in Sn in a continuous map f : Sn

→ Rn such that f (v0) = f (v1) for some v0, v1 ∈ Sn. There is a discrete path
k : Id → R

n with endpoints f (v0), f (v1) that are values in Rn such that k(0) = k(1).

Proof. Let h : I → Sn be a path from v0 to v1 and h : Id → Sn be its associated discrete path. Then the
composition k = f ◦ h is a discrete path in Rn with endpoints f (v0) and f (v1) so that k(0) = k(1).

Figure 3: 2D and 3D views of discrete paths on a Gomboc Riemannian surface.

Example 3.9. An example of a discrete path that begins and ends at antipodal surface vectors on a bumpy Riemannian
sphere (aka Gomboc sphere) is shown in Figure 3.

Example 3.10. An example of a discrete path h : S2
→ R3 on a 3D Gomboc Riemannian surface is shown in Figure 3.

The same path is also depicted on a 2D slice of the 3D surface. In keeping with Theorem 3.8, each vector h⃗(vt) is a
signal value from the path h. For example, if we let the discrete path be an optical field flow containing a stream of
photons reflected from a Riemannian surface, then there are number of possible signal values for h⃗(vt), e.g.,
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1o wavelength of h⃗(vt).
2o frequency of h⃗(vt).
3o electron voltage of h⃗(vt).
4o lumens (luminosity) of h⃗(vt).
5o gradient of h⃗(vt), t ∈ Id, which would be perpendicular to the surface at (x, y, z), defined by

1rad(⃗h(vt)) =
∂h⃗
x

i +
∂h⃗
y

j +
∂h⃗
z

k.

Figure 4: Trajectory of a particle over twistor curve realizable as the union of a sequence of sub-arcs on Lefschetz arc ℓ = >pq on a R.S.
Ward hypersurface CS [20, p.62].

4. Feynman Trajectories of a Particle

This section introduces particle trajectories as continuous paths over the curvature of space-time, which
leads to the counterpart of the discrete path results already given. The transition from discrete paths
results from the geometry of space-time generated by quantum processes [8], which is in keeping with the
observation by R. Penrose [13] that the link between space-time curvature and quantum processes such
as those found in Feynman trajectory of a particle is supplied by the use of twistors. A twistor space is a
complex manifold CM. For example, a Lefschetz arc in curved space-time is a R.S. Ward hypersurface S
twistor [20, p.56], which is a complex curve ℓ in CS.

Example 4.1. A sample twistor curve ℓ ∈ CS is shown in Fig. 4, which is a geometric realization of a Feynman
trajectory of a particle (see Def. 4.2), which leads to a space-time view of a Lefschetz arc (see Def. 4.2 and Lemma 4.5).

Definition 4.2. The trajectory of a particle in a 2-plane in curved space-time is a map

h : R2
× S2

→ R2
× S2

defined by

h(ttx ) =
>

ttx , ttxi
∪

⋃
>

ttxi
, t′t′

x′i

t, t′ ∈ R, xi ∈ S2, i ∈ I,

in which each
>

ttxi
, t′t′

x′i

is a space-time line segment in a curve ℓ starting with subarc
>

ttx0
, ttxi

in a Lefschetz arc at times

tt (instant t in region time t) with index i in the unit interval I = [0, 1] is mapped to an arcwise-connected set, i.e,
the line segments in the trajectory are attached to each other and starting with

>

ttx0
, tt′xi

, there is a path from any subarc

a sequence of subarcs can be traversed to reach an ending subarc
>

ttxn
, t′t′xn′

in a N.M.J. Woodhouse [23] twistor space

R2
× S2 with metric signature + + −−.
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Remark 4.3. From Definition 4.2, the vectors in h(txi ) are J.H.C. Whitehead zero cells [21] in an arcwise-connected
space R2

× S2 .

Definition 4.4. A Lefschetz arc E is a curve ℓ attached between a pair of 0-cells p, p′. We assume the curve ℓ is
dense and the points in ℓ are path-connected, i.e., between every pair of points q, q′ in ℓ, there is a sequence of sub-arcs
traversable between q and q′.

Lemma 4.5. A trajectory of a particle is realizable as a Lefschetz arc.

Proof. From Definition 4.2, a trajectory h is a curve ℓ that starts and ends with a 0-cell and is the union
of subarcs in an arcwise-connected space. Hence, from Definition 4.4, the trajectory h is realizable as a
Lefschetz arc.

Example 4.6. A sample trajectory of a particle as a Lefschetz arc over a twistor curve realized as a Lefschetz arc
ℓ =>pq with endpoints (0-cells) p⃗, q⃗ and which is the union of sub-arcs is shown in Figure 4.

Definition 4.7. The unit I = [0, 1] ∈ R is the set of all real values in the closed interval with initial value 0 and
ending 1 and an unbounded number of consecutive everywhere dense subintervals of real values between 0 and 1.
That is, every real number x in a subinterval of A ⊂ I has another real number x′ ∈ A that is arbitrarily close to x.

Lemma 4.8. The trajectory of a particle is continuous.

Proof. From Definition 4.7, I is dense and is the index set for the points in the trajectory of a particle. A
particle moving along the Lefschetz curve can be observed at any real value in the unit interval I = [0, 1]
(see J.J. Sakurai and J. Napolitano [18, p. 37]). Let h be the trajectory of a particle ttx . One can consider this
trajectory as a curve ℓ : I → Im h defined by ℓ(t) = ttxi

with ℓ(0) = ttx . Since ℓ is continuous, for any close
pair i, j in I will be mapped to close pair ttxi

and ttxj
and hence close points in R2

× S2 will be mapped to
two close trajectories. Hence, h is continuous. Then if i, i′ ∈ I are close, then txi , txi′ are close. Hence, the
trajectory h is continuous.

Remark 4.9. In the proof of Lemma 4.8, we considered a trajectory of a particle as a curve, parametrized on the closed
interval [0, 1]. However, in 1-D Quantum Mechanics, this is not the case, i.e.. The points of the trajectory may have
an infinite number of possible values so that they may not be limited in [0, 1] but rather are lying in (−∞,∞). For
more details, see J.J. Sakurai and J. Napolitano [18, pp. 37-42].

Example 4.10. Given a trajectory h, consider the set J = {ti}i∈I of the instants of time of occurrence of the points in
the trajectory of a particle over a vector field. The map 1 : I → R defined by 1(i) = ti is continuous, since for every
arbitrarily close pair i and j, ti and t j are also arbitrarily close.

5. Feynman Path Integral

In this section, it is observed that a Feynman path is continuous (Lemma 5.2), which leads to the results
in Theorem 5.4 and Theorem 5.5 for Feynman paths, which are consequences of the Borsuk-Ulam Theorem.

Definition 5.1. [4, p. 31] A Feynman path is a function H : R2
× S2

→ S2 defined by H(ttx ) = x for a particle at
point x at time tt.

Lemma 5.2. Every Feynman path is continuous.

Proof. Let H : R2
× S2

→ S2 be a Feynman path, defined by H(ttxa
) = xa which is the trajectory h of a particle

at point xa at time tt. Let ℓ represent that a particle travels over during its trajectory and let H(ttxa
) = xa be

a point in ℓ. For simplicity, the curve ℓ is referred to as the trajectory of a particle. During the passage of a
particle over ℓ, ℓ has no gaps in it. Since a trajectory map h is continuous, two close points ttxa

and ttxb
will

lead us two close points xa and xb in ℓ at time tt. Hence, a Feynman path h is continuous.
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Remark 5.3. In Lemma 5.2, the continuity of a Feynman path H is explained in terms of the closeness (nearness)
paradigm from [12, §1.5, p. 8], instead of the abstract (less intuitive) ϵ − δ view of continuity. This approach befits
the character of the trajectory of a particle over a curve ℓ, where the trajectory of a particle and the curve ℓ (without
gaps) are traced by the particle in its trajectory. Just as pairs of points in the curve ℓ can be arbitraily close, so too,
from Lemma 4.8, the vectors H(ttxa

),H(ttxb
) in the trajectory of a particle can be arbitrarily close.

The value of a path between points a and b on a curve ℓ (the positions of a particle trajectory at times
ta, tb, respectively), is K(b, a), defined in a complex space CS with respect to Planck’s constant ℏ by Feynman
and Hibbs [4, p. 45] by

V(x, t) = Potential energy of particle with mass m.

L =
m
2

ẋ2
− V(x, y) (Lagragian for the system).

S[b, a] =
∫ tb

ta

L(ẋ, x, t)dt

a, b = points on a twistor curve.

K(b, a) =
∫ b

a
e( i
ℏ )S[b,a]

Dx(t).

A Feynman path H : R2
× S2

→ S2 over a curved space S2 can be considered as H = pr2 ◦ h, the
composition of its corresponding trajectory map h : R2

× S2
→ R × S2 and the second projection map

pr2 : R2
× S2

→ S2. Given a fixed point bh on ℓ, define α : S2
→ R2 by α(a⃗) = K(bh, a) where K(bh, a) is the

value of the trajectory h containing points bh, a in a segment
>

bh, a in a curve ℓ starting at a and terminating
at bh.

Theorem 5.4. (Feynman Path Theorem) Given a map α : S2
→ R2, there exists a⃗ in S2 such that α(a⃗) = α(−a⃗).

Proof. From Lemma 5.2, a Feynman path H is continuous and so that α is also continuous. Hence, from
Theorem 1.1, we obtain the desired result, α(a⃗) = α(−a⃗) for antipodal points a,−a in a Feynman path H.

Theorem 5.5. (Feynman Trajectory-of-Particle Theorem) The Feynman trajectory of a particle satisfies Borsuk-
Ulam Theorem 1.1. Let H : S2

→ R2 be the trajectory of a particle on the surface of sphere. There is at least one pair
vectors p⃗, p⃗′ ∈ S2 such that H(p⃗) = H(p⃗′).

Proof. From Lemma 5.2, a Feynman trajectory is continuous. Hence, from Theorem 1.1, we obtain the
desired result for antipodal points p⃗,−p⃗ ∈ Sn in the Feynman trajectory h.

Theorem 5.6. (Feynman Path Integral Theorem) There exists a Feynman path with an initial path integral
K(bh, a) for an initial vector a⃗ that equals the path integral K(bh,−a) for a later vector −a⃗, which may or may not be
the antipode of vector a⃗.

Proof. K(bh, a) are Feynman path integrals that resonate (have values) for a particle that has gradients on
either two different surface curvatures along a surface curve ℓ or on the same surface curvature on a path
ℓ′ for a boomerang trajectory that follows a path that is a cycle. In either case, choose an intermediate
point bh in the path between a⃗ and bh so that the two segments on ℓ have the same length. In that case,
K(bh, a) = K(bh,−a).

Remark 5.7. The significance of Theorem 5.6 is that the endpoints on a particle trajectory curve ℓ need not be
antipodal points. That is, Theorem 5.6 is more general than Theorem 5.4.
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6. Woodhouse Borsuk-Ulam Theorem

This section gives three results for N.M.J. Woodhouse contour integrals [23, p. 198], defined with respect
to the set of all real α-planes that has topology R2

× S1, which is compactified by adding S1 representing
α-planes that lie in the null cone at∞. First, consider

ξ = x1 + ix2 and τ = t1 + it2, representing α-planes as surfaces, with

w = ξ + z̄τ, w̄ = ξ̄ + zτ̄, constant for z = eiθ, where

z = eiθ determines orientation of α-plane.

ϕ(w, w̄, z) =
1

2π

∮
|z|=1

f (w, w̄, z)
dz
z
, expanded to obtain

ϕ(w, w̄, z) =
1

2π

∮
|z|=1

f (ξ + z̄τ, ξ̄ + zτ̄, z)
dz
z
.

Let Φ : S2
→ C be a map defined by Φ(p⃗) = ϕ(wp⃗, w̄p⃗, z), where wp⃗ is the point representing p⃗ on

the equilateral circle Sp⃗ on S2 which is passing through p⃗. The function Φ can be realized as a function
Φ : S2

→ R2 as C and R2 are homeomorphic.

Definition 6.1. The contour integral Φ : S2
→ R2 is a smooth function, since ϕ is a smooth function on a twistor

space [23]. That is, Φ is continuous.

Figure 5: Woodhouse contour integrals on sub-twistor curve antipodes q, q′ with
∮
>

qt()

=
∮
>

tq′()

.

Theorem 6.2. The contour integral Φ satisfies the Borsuk-Ulam Theorem.

Proof. From Definition 6.1, the contour integral Φ : S2
→ R2 is a continuous function. The result follows

from Theorem 1.1, i.e., there exist antipodes p⃗,−p⃗ on a twistor curve in R2
× S2 such that Φ(p) = Φ(−p).

Corollary 6.3. The map Φ also satisfies the path-Borsuk-Ulam Theorem given in Theorem 3.5.

Proof. Take n = 2 and replace the continuous map f : Sn
→ Rn with Φ : S2

→ R2 in the proof of
Theorem 3.5.

Example 6.4. Sample contour integrals on sub-twistor vectors that are antipodal are shown in Figure 5.

Theorem 6.5. Let ϕ,ϕ′ be the Woodhouse contour integrals over a twistor curve ℓ and let p, p′ be any two distinct
points on ℓ. Then there are Φ,Φ′ such that Φ(p) = Φ′(p′).

Proof. Replace the Feynman path integral with the Woodhouse contour integral in the proof of Theorem 5.6,
and the desired result follows. That is, we can always find a point q between p, p′ on the twistor ℓ such that
Φ(p) = Φ′(p′).

Remark 6.6. Theorem 6.5 covers a broader spectrum of twistor length measurements than Theorem 6.2. That is, for
any pair of distinct vectors on a twistor curve, we can always find an intermediate vector so that the contour integrals
over the resulting twistor sub-arcs have equal value.

Example 6.7. Sample contour integrals on sub-twistor curves>v1, v2,
>v2, v3 with end points that may or may not be

non-antipodal are shown in Figure 6.
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Figure 6: Woodhouse contour integrals on sub-twistor curves>v1, v2,
>v2, v3 with

∮
>v1 ,v2

() =
∮
>v2 ,v3

().

7. Concluding Remarks

The focus in path Borsuk-Ulam Theorem 3.5 is on a homotopic path between antipodes on the surface
of a sphere Sn mapped to real values in Rn. The geometry underlying the Borsuk-Ulam Theorem looms
up, for example, in the realization of a homotopic path as an arc stretching over a planetary curved surface
between one location and another location at varying space-times with the same latitude and longitude. In
this paper, the Borsuk-Ulam Theorem is an emperor with new clothes, namely,

1o How to look: consider either a discrete or continuous homotopic paths between antipodes.
2o Geometric realization: endpoints of twistor curves that are either antipodal or non-antipodal.
3o Length-of-arc measure: e.g., measure with either a Feynman path integral or Woodhouse contour integral

over arcs having antipodal endpoints.
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