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Abstract
Relationships among near set theory, shape maps and recent accounts of the Quantum Hall effect pave the way to neural

networks computations performed in higher dimensions. We illustrate the operational procedure to build a real or artificial

neural network able to detect, assess and quantify a fourth spatial dimension. We show how, starting from two-dimensional

shapes embedded in a 2D topological charge pump, it is feasible to achieve the corresponding four-dimensional shapes,

which encompass a larger amount of information. Synthesis of surface shape components, viewed topologically as shape

descriptions in the form of feature vectors that vary over time, leads to a 4D view of cerebral activity. This novel, relatively

straightforward architecture permits to increase the amount of available qbits in a fixed volume.
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Multidimensional approaches are a novel field of research,

with a potential to provide insights into neural organization

(Tozzi 2019). However, these approaches are technically

demanding to cope with elusive multidimensional activi-

ties. The recent onset of datasets encompassing thousands

of features has led to the development of novel tools, such

as feature selection, to model the underlying high-dimen-

sional settings of neurodata generation (Garcia et al. 2018).

Despite feature selection techniques allow the reduction of

the data dimensionality and improve algorithms’ perfor-

mance (Dmochowski et al. 2017), huge data volume makes

learning tasks computationally demanding. Increasing

features’ quantity/complexity results in reduced computa-

tional efficiency of algorithms. Most of the algorithms in

use, developed for neural datasets of small size, cannot

cope with the emerging Big Data problems. Therefore,

novel tools are required to quantify multidimensional

issues related to neuronal systems.

In quantum computing, quantum properties can be used

to represent and structure data (stored in terms of qbits),

providing an amount of information higher than the clas-

sical computers. Here we describe a novel neural com-

puting tool that is able, starting from simple shapes traces

encompassed in a two-dimensional lattice, to detect infor-

mation from a fourth spatial dimension. We aim to transfer

the framework of the quantum Hall effects provided by

Lohse et al. (2018) to the realm of brain computing, to

demonstrate the feasibility of a synthetic quantum network

equipped with four spatial dimensions (plus time), instead

of the classical three (plus time).

We will describe 4D neural computing in terms of a

computational device able to cope with shape maps, i.e.,

shapes’ assessment at various hierarchical levels of syn-

thesis. At first, we will define the fundamental structure for

neural maps construction; then we will provide the opera-

tional steps for achieving 4D neural computing. We will

also show that shape maps provide an expanded view of the

Borsuk–Ulam Theorem (Tozzi et al. 2017), which allows

to increase the amount of available qbits.
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Introducing shape maps

In near set theory, we consider a space K and a probe

function / : 2K ! Rn(Peters 2007, 2014). Given a small

neighborhood U � K, we construct the fiber bundle

KU;K; p;/ Uð Þð Þ. Here, KU is termed the glossa (a set

paired with description (Ahmad and Peters 2018)), i.e., a

space where each k 2 K is paired with / kð Þ, due to the

local trivialization property. This structure can be descri-

bed as follows:

/ Uð Þ ! KU !p K:

To define classical set theoretic operations incorporating

description, we introduce the notion of descriptive inter-

section (Di Concilio et al. 2018). Let A;B � K and

/ : 2K ! Rn. A descriptive intersection is defined as:

A
\

U

B ¼ x 2 A [ B : / xð Þ 2 / Að Þ and / xð Þ 2 / Bð Þf g:

Note that a descriptive intersection of sets A;B consists

of all the elements. in either A or B, having the same

description. In other words, sets A and B are close, pro-

vided there is at least one pair of elements a in A and b in B

that are close descriptively. Implicit here are two forms of

near sets, i.e., overlapping spatially near sets with

(figure 8 shape) and disjoint (non-overlapping) descrip-

tively near sets containing shapes with the same descrip-

tion, e.g., A = . B = with shape in

common to A and B. In effect, members of the descriptive

intersection of a pair of sets (e.g., neurons, brain signals)

are a source of fibers and concomitant information in the

form of closeness for what we call a topological charge

pump. It follows that all the elements in A \ B are included

in the descriptive intersection. We can represent this defi-

nition in terms of fiber bundle structure and classical set

theoretic operations as follows:

Note that the arrows are used here as connections in a

topological sense, i.e., to establish descriptive intersection

and union in fiber bundles.

Once established the notion of descriptive intersection,

the next step is to define a descriptive union. Four different

possible definitions have been discussed by Ahmad and

Peters (2018): they consider either elements in A [ B(non-

restrictive), or A \ B(restrictive), or few values of

description (descriptive discriminatory), or all possible

values (descriptive nondiscriminatory). Here we will

evaluate just the non-restrictive and descriptive discrimi-

natory union. Given A;B � K and / : 2K ! Rn, non-re-

strictive and descriptive discriminatory union is described

as follows:

A
[

/¼ i;jf g
B ¼ x 2 A [ B : / xð Þ ¼ ior/ xð Þ ¼ jf g:

A non-restrictive and descriptive discriminatory union of

sets A, B consists of all the elements of A and B that have

matching description feature values {i, j}, with features

such as shape energy and mass, decided a priori. A more

detailed account of the properties of this union is given in

Ahmad and Peters (2018). In terms of classical set theoretic

operations and fiber bundles, the latter definition can be

described in the following terms:

Shapes in terms of synthesis

The next step is to define representation of a shape as a

synthesis. We begin with a set of shapes Shif gi2Z with no

description attached to them. For simplicity, we assume

them as embedded in a 2-dimensional space. This set of

shapes is said to be at synthesis level 0, which is repre-

sented as S0. To attach description to these shapes, we use a

probe function /1 : 2
S0 ! Rn at level 0 and achieve a gloss

presented as Shi ! /1 Shið Þf gi2Z, standing for the synthesis
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level 1 or S1. In other words, each shape synthesis spirals

upward to more informative views of each shape and

geometrically is a vortex with a shape at its center (level 0).

We move onto the next level of synthesis, attaching

another description to the one already attached in S1. Thus,

S2 is constructed using a probe function /2 : 2
S1 ! Rn.

The corresponding glossa can be represented as

Shi ! /1 Shið Þ ! /2 /1 Shið Þð Þf gi2Z. We generalize for the

mth synthesis level Sm, using the probe function

/m : 2Sm ! Rn. This means that the glossa at Sm can be

written as Shi ! /1 Shið Þ ! � � � ! /m�1f � � �/1 Shið Þð Þ
! /m /m�1 � � �/1 Shið Þð Þgi2Z. In sum, we define a family of

functions that can be collectively termed as shape maps.

Let siþ1
i : Si ! Siþ1, be a map between the synthesis levels,

then for a shape representation with m synthesis levels the

shape maps are Sm ¼ siþ1
i

� �
i¼1;2;���;m�1

.

Figure 1a shows a shape map encompassing different

levels of synthesis. The shapes Shi, exist at S0 the zeroth

level of synthesis. At S1, descriptions are attached to each

shape with the help of a probe function /1. At the next

level of synthesis, a description is attached to the

description of each of the objects by /2. Similarly,

increasing the levels of synthesis, we increase the number

of descriptions until, at Sn, a description is attached to the

previous level using /n. At the highest level, the

Fig. 1 Topological steps of

shape maps construction.

a Shape maps with n-levels of

synthesis. b Shape maps lead to

shapes clustered and glued

together using descriptive

intersection. c Shape description
diagram for m-synthesis levels.

See text for further details. The

arrows are used here as

topological steps of shape maps

constructions
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description can be written as a composition of maps

/nð/n�1 � � �/1 Shið ÞÞ:
Once achieved shapes representation with the desired

level of synthesis, we need to ‘‘organize’’ them according

to a general description throughout all the levels. By ‘‘or-

ganizing’’ we mean clustering the shapes into sets based on

some similarity criterion. Here the previously described

near set paradigm comes into play. For this purpose, the

descriptive intersection (Di Concilio et al. 2018) and the

non-restrictive and descriptive discriminatory union (Ah-

mad and Peters 2018) are used. It is noteworthy there just

one descriptive intersection is feasible, while the number of

non-restrictive and descriptive discriminatory union

depends on the number of pairs of descriptions i; jf g
selected a priori. We have set of descriptive set theoretic

operators for each Sm. Let us represent this set at synthesis

level j as:

O j ¼
\

U

;
[

/¼Ai2A

( )

i2Z

8
<

:

9
=

;;

where A ¼ x 2 2Codomain /jð Þ : xj j ¼ 2
n o

:

In this set, we achieve both descriptive intersection and

a selection of the possible non-restrictive and descriptive

discriminatory unions. Further, if we take into account any

of these operators for Si, the synthesis assesses the

descriptions attached at Si and provides again the elements

of the Si�1 level. This is clear from the arrow diagrams

illustrated in Fig. 1a, which show how the descriptive set

theoretic operations return the elements in the base space

K, rather than the ones in the glossa KU. We assume that

each of the operators in O j can be used for a single set,

instead of canonical binary operator. The same applies for

the descriptive union in which all the elements with a priori

decided descriptions are returned. We define a family of

maps, which clusters the elements in Si based on the

application of operators in Oi:

Ci ¼ cij ¼ sii�1 Oi
j Si�1ð Þ

� �n o

j¼1;2;...; Oij j
;

where Oi
j is the jth element of the set Oi:

This map clusters the elements in Si based on some

similarity measure. If we consider the non-restrictive and

descriptive discriminatory union with / ¼ i; jf g as the

similarity measure, then it results in clustering all the

shapes with description value of either i or j. Every oper-

ator in Oi results in a different cluster (set) of Si elements.

Because each cij : Si�1 ! Si, their union to form Ci results
in a new space P Sið Þ, built by clustering the Si elements.

Hence, we can represent this as Ci : Si�1 ! P Sið Þ. An

example of this map is illustrated in Fig. 1b. This Fig-

ure also illustrates the beginning of a hyper Borsuk–Ulam

Theorem (Borsuk 1957–1958; Matoušek 2003; Tozzi and

Peters 2016a). The introduction of a hyper-BUT paves the

way to techniques for shape detection, ‘‘bunching’’ (clus-

tering), classification, building (disparate shapes are syn-

thesized to form new shapes for future reference), and

shape analysis in a high-dimensional space (Tozzi and

Peters 2016a, b). Shape building, also called bulk building,

allows new shapes to be achieved. The hierarchical view of

shape maps leads to two forms of synthesis, namely, shape-

gluing (descriptive intersection) and shape agglomeration

(descriptive union). We define another family of maps for

synthesis level m represented as Cm ¼ Cif gi¼1;2;...m, termed

clustering maps. This allows to build a diagram termed

shape description diagram, illustrated in Fig. 1c.

A tool from theoretical physics

Here we ask: is it feasible to assess and quantify how

oscillations may generate multidimensional computations?

More specifically, is it feasible to build a real or an artificial

oscillatory network able to simulate an otherwise unde-

tectable fourth spatial dimension? The answer is affirma-

tive. Recent experimental findings describe a technique

that throws an operational bridge between theoretical

physics and quantum computing. At first, we explore the

‘‘Hall effect’’ (Hall 1879) observed in 2D systems with low

temperatures and strong magnetic fields in which conduc-

tance r map to quantized values defined by

r ¼ m
e2

h
; e ¼ charge, h = 6:6� 10�34 kgm2=s; m

¼ filling factor,

i.e., the production of potential difference transverse to

electric current, upon application of a magnetic field per-

pendicular to current.

Magnetic fields with the proper angulation are able to

bend electric rays. A comparable phenomenon, called

‘‘quantum Hall effect’’, occurs in quantum dynamics

(Novoselov et al. 2007). An electric charge sandwiched

between two surfaces behaves like a two-dimensional

material: when this material is cooled down to near abso-

lute-zero temperature and subjected to a strong magnetic

field, the amount that it can conduct becomes ‘‘quantized’’,

leading to the so-called quantum Hall effect (Tozzi 2019).

This puzzling phenomenon is easily explained, if we take

into account that it occurs in four, instead of the canonical

three, spatial dimensions (Zhang and Hu 2001; Kraus et al.

2013; Zilberberg et al. 2018). Lohse et al. (2018) found a

(relatively) simple way to probe four-dimensional quantum

physical phenomena, starting from an artificial, two-di-

mensional dynamic system, a superlattice termed ‘‘2D

topological charge pump’’. The light flowing through the
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two-dimensional superlattice behaves according to the

predictions of the four-dimensional quantum Hall effect.

The Authors provided a two-dimensional waveguide

equipped with patterns acting as manifestations of higher-

dimensional coordinates: in operational terms, they built a

2D lattice consisting of superlattices along the x and y axes.

Each superlattice is achieved by superimposing two

standing waves of different wavelength (Fig. 2a). When a

third wave is introduced along the x direction, this corre-

sponds to tilting the long lattice along a one-dimensional

path shadowing the axis x, carefully choosing the proper

inclination (Fig. 2b). Lohse et al. (2018) and Zilberberg

et al. (2018) provided the proper measures (e.g., angles,

equations) to detect the 4D spacetime quantum Hall effect.

Their procedure on 2D topological charge pumps allows

the achievement of dynamics along the y axis that are

equivalent to movements in four spatial dimensions. In

effect, shape vectors r; e; m; tð Þ have components that

describe time-varying shapes relative to the changing

temporal (spacetime) component t. They lead to two dif-

ferent responses: a linear one (two-dimensional response

with fixed m) along the axis x and a nonlinear one (four-

dimensional response with time-varying r relative to e; m)
(Fig. 2c). In sum, the Authors provide a technique which

describes quantum dynamics in terms of pure oscillations.

Here we ask: could such procedure be transferred, with the

due corrections, to quantum computing, in order to build a

spatial four-dimensional device where quantum computa-

tional operations might take place?

Neural computations in the form of shape maps

In the previous paragraph, we showed that Lohse et al.’s

(2018) approach, i.e., a 2D topological charge pump, holds

true for the assessment of the unusual multidimensional

phenomenon occurring in quantum dynamics’ Hall effect.

Here we aim to show how, with the proper amendments,

their four-dimensional- apparatus could be also used to

build, assess and quantify a further spatial dimension of

neural networks endowed in two-dimensional lattices. In

other terms, our aim is to explore 4D shapes using 2D

functional lattices, where the constructing basis in the x

and the y dimensions are superlattices, i.e., periodic layered

structures derived from the superposition of two stationary

waves of different wavelengths. Our goal is to correlate

shape maps to Lohse’ et al.’s 2D lattice oscillations, the

latter standing for the S0 at the Oth level of synthesis

(Fig. 3, lowest part). The entire topological pump stands

for the space K, while its horizontal and vertical oscilla-

tions stand, respectively, for A;B � K. The topological

pump’s phase ux (which is the pump parameter, achieved

when pumping is performed by moving the long lattice

along x) stands for the probe function u1 displayed in

Fig. 1a. The topological pump’s phase uy (which stands

for a transverse superlattice phase that depends linearly on

x, and which varies with ux changes) stands for the probe

function u2. Note that ux lies at the S1 level of synthesis,

while uy at the S2 level. In sum, when ux is modified, we

achieve changes in uy, which lead to a quantized non-

Fig. 2 4D physical activities on a 2D superlattice, according to Lohse

et al. (2018). a Illustrates a topological lattice with two waves of

different wavelength (red and blue thin lines). b Depicts a third wave

(blue thick line) with the proper wavelength and angulation (not

shown here) superimposed to the lattice along the x direction. The

required angulation of the third wave might also be achieved by tilting

the lattice. c The superimposition of the three waves gives rise to two

different paths: a 2D linear one along the x axis (yellow arrow), and a

nonlinear 4D one along the y axis (red arrow). (Color figure online)

Modified from Tozzi (2019)

Cognitive Neurodynamics

123

Author's personal copy



linear response along y: such nonlinear response stands for

the four-dimensional features in the topological space K.

Note that, when an adiabatic pump cycle of the 2D topo-

logical charge pump is performed (Fig. 4), we achieve

periodic modulation along closed trajectories, both on the

horizontal and vertical plane (curves ux and ux in the upper

part of the Fig. 4). In a full pump cycle, these closed tra-

jectories cover a closed surface which lies in the 4D

parameter space (middle part of Fig. 4). Our model allows

the assessment of antipodal points in higher dimensions,

due to the hyper-BUT dictates (Fig. 4, lower part). When

evaluating 2D signals in 4D phase spaces, we achieve a

multidimensional structure equipped with antipodal fea-

tures with matching description.

Conclusions

The benefits in using near sets in biomedical signal anal-

ysis, camouflage detection, human pattern recognition, c

cellular division trails, zero-shot recognition and visual

pattern classification are clearly recognized in the litera-

ture. Linking these developments with our unconventional

combination of disciplines in network science and

mathematics, we proposed a new form of neural compu-

tation using four spatial dimensions and sketch the pre-

liminary theoretical steps to detect, asses and quantify a

fourth spatial dimension using a neural network. In par-

ticular, we aimed to transfer the framework of the quantum

Hall effect provided by Lohse et al. (2018) to the realm of

neural computation, in order to: a) describe real multi-di-

mensional brain dynamics and b) demonstrate the feasi-

bility of a synthetic network equipped with four spatial

dimensions (plus time), instead of the classical three (plus

time). We provided the theoretical apparatus to link two-

dimensional topological charge pump to topological shape

maps, achieving neural computing in four spatial dimen-

sions. Indeed, working on a properly manipulated two-di-

mensional quantum lattice such as the topological charge

pump, it is feasible to build a transverse oscillation

standing for the whole system’s four-dimensional compo-

nent. We showed how the superimposition of waves of

different frequency and orientation produces the required

superlattice’s functional reticulum. When the latter is

crossed by other waves of different frequency along its x

axis, both (two-dimensional) linear and (four-dimensional)

nonlinear dynamics are accomplished. The superimposition

of the proper waves gives rise to two quantifiable and

assessable different motions: a linear one along the x axis,

and a nonlinear one along the y axis. The oscillatory

response along the y axis stands for the artificial network’s

component displaying the fourth spatial dimension.

The question is: why might scientist perform computa-

tions in four spatial dimensions, instead of the canonical

three? How can real information be detected though a

multidimensional apparatus? How much could neural

computing profit from operations taking place in higher

dimensions? The use of abstract mathematical language in

multi-dimensions is justified if it helps to simplify our

available techniques in neuroscience or design new appli-

cations (e.g., neurotechnology or neurodata tools). This

might contribute to improve, for example, automatic clas-

sification of internal mental states during bistable percep-

tion (Sen et al. 2020), connectivity-based features of EEG

signals for object recognition (Tafreshi et al. 2019),

uncertainty removal in neural networks (Tozzi and Peters

2020). In Fig. 5, we provided an additional effort to sim-

plify the very abstract concepts of high dimensional

topology and to highlight their efficacy. We started from a

three-dimensional network embedded in a convex mani-

fold, where the quantum Hall effect is re-used for com-

putational purposes (Fig. 5a). In operational terms, the

network in Fig. 5a of specific oscillatory interactions in

superlattices might be used also to assess more conven-

tional neural network architectures, such as, e.g., manifolds

representing electrophysiological thresholds of groups

oscillating neurons already formulated in four dimensions

Fig. 3 Near set theory’s and shape maps’ lexicon can be used to

describe the operations taking place on the 2D topological charge

pump too. The yellow squares describe the levels of synthesis, while

the red ones the near set theory’s counterparts of the Lohse et al.’s

lattice
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(Izhikevich 2010), or spiking neural network models of

mental imagery (Riley and Davies 2020), or neurocom-

putational models of semantic memory (Ursino et al.

2018). In our framework, fast and slow oscillations com-

puting concepts of sets (e.g., union, intersection) may stand

for both classes or operations in near set theory. The same

equivalence rules hold between classical set-theory and

neural networks (e.g., like the classical McCulloch-Pits

models) and between near sets and fiber bundles in 4

spatial dimensions. Once achieved an output signal (a

shape) in three dimensions (Fig. 5b), we projected it to a

four-dimensional hypersphere (Fig. 5d). This approach

Fig. 4 Adiabatic pump cycle in

different dimensions. Note that

the paths in 2D give rise to a

multifaceted manifold in 4D.

The lower part of the

Figure (embedded in a red

square) illustrates how the

Borsuk–Ulam theorem holds

true for the 2D topological

charge pump. Indeed, inside the

transformed parameter space

where singularities correspond

to planes that touch at the

origin, it is easy to detect

several antipodal points with

matching description (green and

blue triangles, yellow stars). See

Lohse et al. (2018) for further

details and the legenda of the

plots depicted here. (Color

figure online)

Cognitive Neurodynamics

123

Author's personal copy



allows us to use projections and fiber bundles to make

geometrical sense of extra ‘‘spatial’’ dimensions, so that we

can move along an internal direction without carrying us

away from the particular space–time point at which we are

situated. This might explain fiber-independent coactivation

of opposite fMRI activity, as suggested by Tozzi and Peters

(2016a). In particular, when projecting qbits (a shape can

be described in terms of qbits) from lower to higher

dimensions, their number increases (Fig. 5d), due to the

dictates of the recently-developed variants of the Borsuk–

Ulam theorem (Tozzi and Peters 2019). The shape pro-

jection from three to four spatial dimensions allows us to

achieve TWO shapes with matching description, because

the mappings takes place one dimensions higher. This

means that a four-dimensional quantum computer amplifies

the message, but does not require increases in phase

Fig. 5 A simplified sketch of

the suggested four-dimensional

network. The Quantum Hall

effect explains how a high-level

description of a neural network

could detect very general forms

of information from a SPATIAL

fourth dimension. a Three

dimensional appearance of

neuro-oscillatory activity in a

Quantum Hall effect context.

Different waves in the neural

network superimpose according

the dictates of near sets

symbols. An output (the shape

in b) is produced in the three-

dimensional manifold and is

projected to a four-dimensional

manifold in d, where,
counterintuitively (b), a bigger

amount of information can be

stored in smaller amount of

space
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space’s volume: indeed, going in higher dimensions, the

manifold volume does not increase, while the information

does (Fig. 5c) (Tozzi and Peters 2019). In other words, the

interaction among different waves produces a novel func-

tional dimension, i.e., a higher dimensional phase space

where computational operations take place more efficiently

at the same energetic cost.

To provide a theoretical operational example, in a visual

two-dimensional scene the presence of the shape causes a

deformation in two-dimensional topological charge pumps.

The resulting four-dimensional wave represents neurons

firing in different sections of the brain (Don et al. 2020)

and a corresponding computer’s response to the introduc-

tion of object shape parameters (geometry, feature vectors)

in its oscillatory lattice. Therefore, four-dimensional

oscillation is the main feature that leads to multiple shape

vectors, i.e., each four-dimensional oscillation results in a

corresponding shape description. Further, shape feature

vector components have the x and y axes that can be

arranged in varying orientations according to different

required shape reconstructions, making it possible to

achieve an increase in discriminatory power and

detectable features. The last, but not the least, different

neuronal activities might exhibit different four-dimensional

hidden components, that, once detected, could be experi-

mentally assessed and quantified.
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